News

  • 0
  • 0

Newly 3000°C Ablative Ceramic Coating Successfully Developed - Multi-boron-containing Single-phase Carbide

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Boron carbide is also known as black Diamond. It has a molecular structure of B4C. The powder is typically grayish. It is one the hardest materials known (the other two being diamond and cubic boronnitride), which can be found in many industrial applications, including tank armor. It has a Mohs toughness of 9.3. A large number of tests were conducted by the team of Academician Huang Boyun of Central South University’s National Laboratory of Powder Metallurgy to develop a new ceramic coating and composite materials that are resistant to 3000°C ablation. This discovery may pave a way for the development hypersonic cars.

According to Professor Xiong Xiang of the Institute of Powder Metallurgy of Central South University's Institute of Powder Metallurgy (IPM), hypersonic flight is defined as a flight at a speed equal or greater than five times the speed of the sound, which is approximately 6,120 kilometers per hours. With such high speeds, a flight from Beijing to New York could be completed in just 2 hours if key structural components can withstand air friction and hot-air impact of 2000-3000 deg. C. . Central South University has developed ceramic composite materials and coatings for ultra-high temperatures that provide better protection of the above components. The world's very first synthesis of a single-phase quaternary boron carbide ultra-high-temperature ceramic material has been reported. This coating is a perfect "fusion" between carbon-carbon. The current focus of research in the area of new materials is on the mixed materials of binary compound system. The successful application of materials based on quaternary systems in the hypersonic field will be greatly facilitated by its development.

The novel ceramic coated modified carbon/carbon material is composed by a single-phase carbide containing boron and zirconium. It also contains titanium, carbon, and boron. Infiltration of a multiceramic phase is the main method for obtaining it. The ultra high temperature ceramic combines the high-temperature adaptability of carbides and the anti-oxidation property of borides. This makes the coatings, composites and materials exhibit superior ablation and thermal shock resistance. The ceramic oxide can withstand an ultra-high temperature of 3000 degC and has low oxygen diffusion rates, self-healing properties at high temperatures, dense and gradient ceramic coatings, all of which make the ceramic a lighter material. Ablation loss rate.

"Because the ultra-high-temperature ceramic combines carbides' high temperature adaptability with borides' anti-oxidation properties, the coatings and materials above have superior ablation and thermal shock resistance. This is essential for hypersonic cars. "The promising parts," said Xiong Xiang.

Nature Communications published the results of research conducted by the team on 15th June. The State Key Laboratory of Powder Metallurgy of Central South University was the first unit to complete the thesis. Zeng Yi and Professor Xiong Xiang are the first correspondents. First author is the doctor. The University of Manchester (UK), a partner unit of the University of Manchester, UK characterized and analysed the material.

After publication, the article attracted a great deal of interest from the foreign media and academic circles. The downloads of the article exceeded 5,000 in the three days immediately following publication. The Daily Mail in Britain, The Economist in the United States and Public Machinery (Russia) have all covered the research. . According to the reviewer in Nature Newsletter, the above research results "will ignite academic excitement and interest in applying quaternary materials in hypersonic fields, because this material system represents a promising one."

The team began working with Professor Chang Xiang in 2002 with support from National 863,973 and National Natural Science Foundation. A scholar from Yangtze River was leading the project. Find a new ultra high temperature ceramic coating that has excellent oxidation resistance, and resistance to ablation. The material systems screened during the research included all existing high temperature ceramics, high temperature composites, zirconium and titanium carbides, zirconium and zirconium boreides, tantalum and strontium carbides. It has taken 15 years to achieve the breakthrough of developing new ablation-resistant coatings in 3000 degC ultra high temperature environment.

Tech Co., Ltd., a professional Boride powder manufacturer, has over 12 years of experience in chemical product development and research. You can contact us by sending an inquiry if you are interested in high quality Boride powder.


Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

High Purity 3D Printing 304 Stainless Steel Powder

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in concentrated hydrochloric acids.Particle size: 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Po…

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries. About High Density Tungsten…

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Molybdenum powder is made of a combination of molybdenum with boron. The chemical formula for molybdenum is MoB2, and the molecular weight is 202.69. Purity: >99%Particle size : 5-10 um Molybdenum Boride MoB2 Pulp : Molybdenum-boride, is a molybden…