News

  • 0
  • 0

What are lithium battery anode materials

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Anodes for lithium batteries Materials that store and release Lithium ions are an essential part of the lithium battery. The anode material is responsible for accepting lithium from the positive electrolyte during the charging process. It then releases lithium to the positive electrolyte during the discharge process. The anode material chosen directly impacts the cost, performance and safety of a lithium battery.

The characteristics of anode material for lithium batteries

Reversible capability: Reversible capacities refers the amount of lithium that the battery is able to store and release when charging and discharging. The higher a battery's reversible capability, the more energy it can store and release.

Lithium ion diffusivity coefficient: The diffusion coefficient of lithium ions in anode materials indicates the difficulty with which lithium ions diffuse. The higher the diffusion coefficient the better is the electrochemical performance.

Electrochemical stability: The ability of anode materials to stabilize their structure and reactivity while the battery is charging or discharging. When the anode material's electrochemical stabilty is poor, battery performance will be affected, as well as its life span and safety.

Cost: Considering the commercial application, the price of anode materials is also an important factor to be considered.Currently, lithium battery anode materials on the market mainly include graphite-based materials,

Lithium titanate and tin-based material are both good options. One of them is graphite-based material, which has high reversible capacities and good electrochemical stabilty, but its cost can be high. Although lithium titanate has low cost and high electrochemical resistance, its reversible ability is limited. Tin-based material has a high capacity for reversible use and is low in cost. However, their electrochemical stabilty is poor. Different anode material is suitable for various applications and battery systems. It must be chosen and used according the actual needs.

Research and development in battery materials is important because of their important role in lithium batteries. With the continued progress of technology, and the growing application demand, research and development for new anode material will become more active in the future. At the moment, the main negative electrode materials are transition metal nitride (TMN), transition metal carbide (TMC), alloy-like material, carbon nanotubes, two-dimensional material, and carbon nanotubes. These new materials will lead to the development of future lithium batteries anode materials due to their higher reversible capacitance, improved electrochemical stability, and lower cost.

Use of lithium anode materials

Applications of anode material are wide-ranging, and include a number of fields requiring portable power sources such as electronic devices, electric vehicles, energy storage systems, and so on. Following are some specific examples of application:

Electronic products, such as mobile phones, tablet PCs and laptops. Power is provided by lithium batteries. In these areas, anode material choice directly affects energy density and charging speed as well as the life, safety, and longevity of the batteries.

Electric Vehicles - Electric vehicles use a high amount of energy to power the vehicle. Therefore, they must have high capacity, high density batteries. Electric vehicles' performance and safety are affected by the choice of anode.

Electricity Storage Systems. These include wind energy systems, home energy systems, etc. These systems are required to produce a large amount power during periods of peak demand, which is why they need large-capacity batteries with high energy-density. The anode material used directly impacts the performance and price of these systems.

What are the different types of anode materials used in lithium batteries?

A new type of lithium batteries, silicon-carbon batteries have anodes that are primarily silicon-based. Silicon-based material has a high reversible capacitance, high electrochemical stabilty and low cost. They have many applications in the field of batteries. There are three main types of silicon materials used as anode material in silicon-carbon battery:

Silicon-carbon materials: Silicon-carbon materials are a composite material that combines silicon-based materials with carbon-based substances. This material offers high reversible capacitance, high electrochemical stabilities and long lives, and can be better matched to the anode for improved battery performance. Silicon content in silicon carbon composites is adjustable to meet the needs of different applications.

Silicon oxide material. Silicon oxide is an excellent negative electrode with high reversible capacities, a long life cycle and good safety. The main drawback of this material, however, is the low efficiency in first charging and discharging. To improve performance it is necessary to use pre-lithiation techniques and other technologies.

Silicon nitride Material: Silicon nitride, a new material for negative electrodes that combines both the advantages of nitride and silicon materials. This material is highly reversible, has high electrochemical resistance and excellent electrical conductivity. Therefore, it is well suited for batteries.

Here are a few examples of the many types of anode material that are available.

Carbon nanotubes. These nanotubes have many advantages, including high specific surface areas, electrical conductivity and chemical stability. Carbon nanotubes have a wide range of applications, including as anode material in lithium-ion cells with high reversible capacitance, stable charging/discharging, and long life.

Graphene : Graphene can be used as anode material in lithium-ion batteries with high reversible capacity, stable charge/discharge and long life. Graphene has good applications as anode materials in lithium-ion cells with a high reversible capacitance, stable charge/discharge and long life.

Alloy materials. Alloys are a type of new anode materials with high reversible capacitance, stable charging/discharging and long life. The disadvantage of alloys is their high cost and difficult preparation.

Metal oxide material: metal oxide is a new anode material with many advantages, including high reversible capacitance, stability of charge/discharge over time, long life span, excellent multiplicity performance, and low temperature performance. Metal oxide materials' disadvantages are their higher preparation costs and lower conductivity.

The following materials can be used as anodes for batteries:

Tin-based Materials: Tin-based materials have high reversible capacitance, good electrochemical stabilty and are low-cost. The disadvantages of using tin-based material are a reduced cycle life and the easy formation of dendrites. These factors reduce battery safety.

Oxygenate materials: Oxygenate materials are a new type anode with advantages such as high reversible capacities, stable charging and discharge, long life, and low costs. The oxygenate material's disadvantage is its poor kinetic performance for electrochemical reactions. This needs to improve.

Transition metal-nitride materials: This new material for negative electrodes has the following advantages: high reversible capacities, stable charging, discharging and long life. It also performs better in electrochemical reaction kinetics. The preparation costs of transition metal material nitride are high and need to be further reduced.

Alloy materials are widely used as negative electrode materials. These include Si-C Composites, SnC Composites and more. These materials offer a higher reversible capacitance and better charge/discharge stabilities, but their cost is high and they need to be further reduced.

The research, development, and application of battery anode material is important for improving the performance of batteries, reducing their cost, and ensuring their safety. New battery anode material application will become more diverse with the continued progress of science, technology and application demand.

Suppliers of Lithium Battery Electrode MaterialHigh-purity ultrafine ultrafine powder is available from us. __S.66__ Such as graphite or graphene. Click on the desired product or email us to send your inquiry.

Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

High Purity 3D Printing 304 Stainless Steel Powder

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in concentrated hydrochloric acids.Particle size: 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Po…

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries. About High Density Tungsten…

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Molybdenum powder is made of a combination of molybdenum with boron. The chemical formula for molybdenum is MoB2, and the molecular weight is 202.69. Purity: >99%Particle size : 5-10 um Molybdenum Boride MoB2 Pulp : Molybdenum-boride, is a molybden…